
• Timer/ Counter definition

• Prescaler and interrupt in timer/counter.

• Timer/Counter in PIC16F887.

• Timer 0 as timer.

• Timer 0 as counter.

• Timer 1 as timer and an example of using Timer 1.

Timer/Counter

Prepared By-

Mohammed Abdul Kader

Assistant Professor, EEE, IIUC

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 2

Most programs use these miniature electronic ‘stopwatches’. These are commonly 8- or 16-bit SFRs the

contents of which is automatically incremented by each coming pulse. Once a register is completely

loaded, an interrupt may be generated!

Timers: If it uses an internal quartz oscillator for its operation then it can be used to measure time

between two events (if the register value is T1 at the moment measurement starts, and T2 at the

moment it terminates, then the elapsed time is equal to the result of subtraction T2-T1).

Timers/Counters

Counters: If the timer receives pulses form the

microcontroller input pin, then it turns into a counter.

Obviously, it is the same electronic circuit able to operate in

two different modes. The only difference is that in this case

pulses to be counted come over the microcontroller input

pin and their duration (width) is mostly undefined. This is

why they cannot be used for time measurement, but for

other purposes such as counting products on an assembly

line, number of axis rotation, passengers etc. (depending on

sensor in use).

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC
3

HOW DOES THE TIMER OPERATE?

In practice, pulses generated by the quartz oscillator are once per each machine cycle, directly or via a

prescaler, brought to the circuit which increments the number stored in the timer register. If one

instruction (one machine cycle) lasts for four quartz oscillator periods then this number will be

incremented a million times per second (each microsecond) by embedding quartz with the frequency

of 4MHz.

It is easy to measure short time intervals, up to 256 microseconds, in the way described above

because it is the largest number that one register can store.

This restriction may be easily overcome in several ways such as by using a slower oscillator, registers

with more bits, prescaler or interrupts. The first two solutions have some weaknesses so it is more

recommended to use prescalers or interrupts.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 4

USING A PRESCALER IN TIMER OPERATION

A prescaler is an electronic device used to reduce frequency by a predetermined factor. In order to

generate one pulse on its output, it is necessary to bring 1, 2 , 4 or more pulses on its input. Most

microcontrollers have one or more prescalers built in and their division rate may be changed from

within the program. The prescaler is used when it is necessary to measure longer periods of time. If

one prescaler is shared by timer and watchdog timer, it cannot be used by both of them simultaneously

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 5

If the timer register consists of 8 bits, the largest number it can store is 255. As for 16-bit registers it is

the number 65.535. If this number is exceeded, the timer will be automatically reset and counting will

start at zero again. This condition is called an overflow. If enabled from within the program, the

overflow can cause an interrupt, which gives completely new possibilities. For example, the state of

registers used for counting seconds, minutes or days can be changed in an interrupt routine. The whole

process (except for interrupt routine) is automatically performed behind the scenes, which enables the

main circuits of the microcontroller to operate normally.

USING INTERRUPT IN TIMER OPERATION

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 6

Both PIC16f887 and 877A have three timers:-

 Timer 0,

 Timer 1, and

 Timer 2.

Timer 0 is 8-bit and can also be used as counter;

Timer 1 is 16-bit timer as well as a counter, whereas Timer 2 is 8-bit timer and can be used as the

PWM time base for the PWM mode of the CCP module(s).

Timers/counters in PIC16F887

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 7

The timer TMR0 has a wide range of application in practice. Very few programs don’t use it in some

way. It is very convenient and easy to use for writing programs or subroutines for generating pulses of

arbitrary duration, time measurement or counting external pulses (events) with almost no limitations.

The Timer0 module timer/counter has the following features:

• 8-bit timer/counter.

• Readable and writable.

• 8-bit software programmable prescaler.

• Internal or external clock select.

• Interrupt on overflow from FFh to 00h.

• Edge select (rising or falling) for external clock.

Timer 0

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 8

Step 1: To select mode:

 Timer mode is selected by the T0CS bit of the OPTION_REG register, (T0CS: 0=timer, 1=counter).

 When used, the prescaler should be assigned to the timer/counter by clearing the PSA bit of the

OPTION_REG register. The prescaler rate is set by using the PS2-PS0 bits of the same register.

 When using interrupt, the GIE and TMR0IE bits of the INTCON register should be set.

In order to use TMR0 properly, it is necessary:

Configuring/ Using Timer 0

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 9

Step 2: Measuring and Counting

To measure time:

 Reset the TMR0 register or write some known value to it.

 Elapsed time (in microseconds when using 4MHz quartz) is measured by reading the

TMR0 register.

 The flag bit TMR0IF of the INTCON register is automatically set every time the TMR0

register overflows. If enabled, an interrupt occurs.

To count pulses:

 The polarity of pulses are to be counted on the RA4 pin is selected by the TOSE bit

of the OPTION_REG register (T0SE: 0=positive, 1=negative pulses).

 Number of pulses may be read from the TMR0 register. The prescaler and interrupt

are used in the same manner as in timer mode.

Configuring/ Using Timer 0 (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC
10

When PSA bit is cleared,

prescaler is asigned to TMR0

timer/counter as ilustrated

on the figure.

When PSA bit is set, prescaler

is asigned to watch-dog timer

as ilustrated on the figure:

Configuring/ Using Timer 0 (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 11

 RBPU - PORTB Pull-up enable bit

o 1 - PORTB pull-up resistors are disabled.

o 0 - PORTB pins can be connected to pull-up resistors.

 INTEDG - Interrupt Edge Select bit

o 0 - Interrupt on rising edge of the INT pin (0-1).

o 1 - Interrupt on falling edge of the INT pin (1-0).

 T0CS - TMR0 Clock Select bit

o 1 - Pulses are brought to TMR0 timer/counter input through the RA4 pin.

o 0 - Timer uses internal cycle clock (Fosc/4).

 T0SE - TMR0 Source Edge Select bit

o 0 - Increment on high-to-low transition on the TMR0 pin.

o 1 - Increment on low-to-high transition on the TMR0 pin.

 PSA - Prescaler Assignment bit

o 1 - Prescaler is assigned to the WDT.

o 0 - Prescaler is assigned to the TMR0 timer/counter.

Option Register

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 12

 PS2, PS1, PS0 - Prescaler Rate Select bit

o Prescaler rate is adjusted by combining these bits. As seen in the table, the same

combination of bits gives different prescaler rate for the timer/counter and watch-dog

timer, respectively.

P S 2 P S 1 P S 0 T M R 0 W D T

0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 0 1:32 1:16

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

Option Register (Cont.)

Note: When TMR0 is set in counter mode and prescaler is assigned to WDT then prescaler of

counter is set in 1:1.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 13

Calculating Count, Fout, and TMR0 values

Using system (internal) clock cycle:

If using INTERNAL crystal as clock, the division is performed as follow:

PIC TIMER0 formula for internal clock

Here, Fout– The output frequency after the division.

 Tout – The Cycle Time after the division.

 4 - The division of the original clock (4 MHz) by 4, when using internal crystal as

clock (and not external oscillator).

 Count - A numeric value to be placed to obtain the desired output frequency - Fout.

 (256 - TMR0) - The number of times in the timer will count based on the register

TMR0.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 14

An example of INTERNAL crystal as clock

Suppose we want to create a delay of 0.5 second in the program using Timer0. What is the value of

Count?

Calculation: First, let’s assume that the frequency division by the Prescaler will be 1:256. Second, let’s

set TMR0=0. Thus:

Calculating Count, Fout, and TMR0 values (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC
15

Using external clock (from RA4 pin): If using EXTERNAL clock source (oscillator), the division is

performed as follow:

PIC TIMER0 formula for external clock

In this case there is no division by 4 of the original clock. We use the external frequency as it is.

Example: What is the output frequency - Fout, when the external oscillator is 100kHz and Count=8?

Calculation: First, let’s assume that the frequency division by the Prescaler will be 1:256. Second, let’s

set TMR0=0. Thus:

Calculating Count, Fout, and TMR0 values (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 16

Problem: Timer0 as timer (Precise time delay by using TMR0)

Write a program to invert the status of PORTB in every 1 second later. Use timer 0 to create time

delay. Suppose, the clock of external crystal oscillator is 8MHz.

Solution:

I f we choose prescler as 1:128, initial count (TMR0)131, count value 125, then for 8MHz clock

we get 1sec time delay from following equation.

𝑓𝑜𝑢𝑡 =
1

𝑇
=

𝑓𝑐𝑙𝑘

4 × 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 × 256 − 𝑇𝑀𝑅0 × 𝐶𝑜𝑢𝑛𝑡

𝑇 =
4 × 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 × 256 − 𝑇𝑀𝑅0 × 𝐶𝑜𝑢𝑛𝑡

𝑓𝑐𝑙𝑘

𝑇 =
4 × 128 × 256 − 131 × 125

8 × 106 = 1 𝑠𝑒𝑐

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 17

unsigned count;

void interrupt()

{

count++;

INTCON.T0IE=1;

INTCON.T0IF=0; // clear timer 0 overflow flag bit

TMR0=131;

}

void main() {

ANSEL=0;

ANSELH=0;

OPTION_REG=0b00000110; // prescaler 1:128

TMR0=131;

INTCON=0xA0;

TRISB=0;

PORTB=0xFF;

while(1)

{

if(count==125){ PORTB=~PORTB; count=0;}

}

}

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 18

Problem: Timer0 as Counter.

There is a schematic in figure below, while the program is on the next page. Timer TMR0 is used as a

counter. The counter input is connected to a push button so that any button press causes timer TMR0 to

count one pulse. When the number of pulses matches the number stored in the TEST register, a logic

one (5V) appears on the pin PORTD.3. This voltage activates an electromechanical relay, and this bit is

called ‘RELAY’ in the program, therefore.

In this example, the TEST register

stores number 5. Of course, it can

be any number obtained either by

computing or defined as a constant.

Besides, the microcontroller can

activate some other device instead of

relay, while the sensor can be used

instead of the push button. This

example illustrates one of the most

common applications of the

microcontroller in the industry;

when something is performed as

many times as needed, then

something else should be turned on

or off.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 19

void main() {

 char TEST = 5; // Constant TEST = 5

 enum outputs {RELAY = 3}; // Constant RELAY = 3

 ANSEL = 0; // All I/O pins are configured as digital

 ANSELH = 0;

 PORTA = 0; // Reset port A

 TRISA = 0xFF; // All portA pins are configured as inputs

 PORTD = 0; // Reset port D

 TRISD = 0b11110111; // Pin RD3 is configured as an output

 OPTION_REG.F5 = 1; // Counter TMR0 receives pulses through the RA4 pin

 OPTION_REG.F3 = 1; // Prescaler rate is 1:1

 TMR0 = 0; // Reset timer/counter TMR0

 do {

 if (TMR0 == TEST) // Does the number in timer match constant TEST?

 (PORTD.RELAY = 1); // Numbers match. Set the RD3 bit (output RELAY)

 }

 while (1); // Remain in endless loop

}

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 20

Timer 1
Timer TMR1 module is a 16-bit timer/counter, which means that it consists of two registers (TMR1L

and TMR1H). It can count up 65.535 pulses in a single cycle, i.e. before the counting starts from zero.

Similar to the timer TMR0, these registers can be read or written to at any moment. In case an overflow

occurs, an interrupt is generated if enabled.

The timer TMR1 module may operate in one of two basic modes, that is as a timer or a counter. Unlike

the TMR0 timer, both of these modes have additional functions.

The TMR1 timer has following features:

• 16-bit timer/counter register pair;

• Programmable internal or external clock source;

• 3-bit prescaler;

• Optional LP oscillator;

• Synchronous or asynchronous operation;

• Timer TMR1 gate control (count enable) via comparator

or T1G pin;

• Interrupt on overflow;

• Wake-up on overflow (external

clock); and

• Time base for Capture/Compare

function.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 21

Configuring Timer 1

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 22

T1CON Register

T1GINV - Timer1 Gate Invert bit acts as logic state inverter on the T1G pin gate or the comparator C2

output (C2OUT) gate. It enables the timer to mea sure time whilst the gate is high or low.

• 1 - Timer 1 counts when the T1G pin or bit C2OUT gate is high (1).

• 0 - Timer 1 counts when the T1G pin or bit C2OUT gate is low (0).

TMR1GE - Timer1 Gate Enable bit determines whether the T1G pin or comparator C2 output

(C2OUT) gate will be active or not. This bit is functional only in the event that the timer TMR1 is on

(bit TMR1ON = 1). Otherwise, this bit is ignored.

• 1 - Timer TMR1 is on only if Timer1 gate is not active.

• 0 - Gate has no influence on the timer TMR1.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 23

T1CON Register (Cont.)

T1CKPS1, T1CKPS0 - Determine the rate of the prescaler assigned to the timer TMR1.

T1CKPS1 T1CKPS0 PRESCALER RATE

0 0 1:1

0 1 1:2

1 0 1:4

1 1 1:8

T1OSCEN - LP Oscillator Enable Control bit

• 1 - LP oscillator is enabled for timer TMR1 clock (oscillator with low power consumption and

frequency 32.768 kHz).

• 0 - LP oscillator is off.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 24

T1SYNC - Timer1 External Clock Input Synchronization Control bit enables synchronization of the LP

oscillator input or T1CKI pin input with the microcontroller internal clock. This bit is ignored while

counting pulses from the main oscillator (bit TMR1CS = 0).

• 1 - Do not synchronize external clock input.

• 0 - Synchronize external clock input.

TMR1CS - Timer TMR1 Clock Source Select bit

• 1 - Count pulses on the T1CKI pin (on the rising edge 0-1).

• 0 - Count pulses of the microcontroller internal clock.

TMR1ON - Timer1 On bit

• 1 - Enable timer TMR1.

• 0 - Stop timer TMR1.

T1CON Register (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 25

TMR1 IN TIMER MODE

In order to select this mode, it is necessary to clear the TMR1CS bit. After this, the 16-bit register

will be incremented on every pulse generated by the internal oscillator. If the 4MHz quartz crystal is

in use, it will be incremented every microsecond.

In this mode, the T1SYNC bit does not affect the timer because it counts internal clock pulses. Since

the whole electronics uses these pulses, there is no need for synchronization.

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC
26

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor

Write code to find the distance of an object using following circuit diagram.

Courtesy: www.electrosome.com

PIC 16F887

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 27

• Provide TRIGGER signal, atleast 10μS High Level (5V) pulse.

• The module will automatically transmit eight 40KHz ultrasonic burst.

• If there is an obstacle in-front of the module, it will reflect the ultrasonic burst.

• If the signal is back, ECHO output of the sensor will be in HIGH state (5V) for a duration of time

taken for sending and receiving ultrasonic burst. Pulse width ranges from about 150μS to 25mS and

if no obstacle is detected, the echo pulse width will be about 38ms.

Ultrasonic Sensor

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 28

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor (Cont.)

Configuring Timer 1 as timer mode

Since we will use Timer1 module as a Timer, we should use internal clock (Fosc/4), ie TMR1CS = 0.

Prescaler is used to divide the internal clock (Fosc/4). Here we can set Prescaler as 2, ie T1CKPS1 =

0 & T1CKPS0 = 1. T1SYNC bit is ignored when TMR1CS = 0. As we are using internal clock

(Fosc/4) we can disable oscillator, ie T1OSCEN = 0. TMR1ON bit can be used to ON or OFF timer as

per our requirements.

Thus we can initialize timer as : T1CON = 0x10

To TURN ON the Timer : T1CON.F0 = 1 or TMR1ON = 1

To TURN OFF the Timer : T1CON.F0 = 0 or TMR1ON = 0

Fosc is the oscillator frequency, here we are using 8MHz crystal hence Fosc = 8MHz.

Time = (TMR1H:TMR1L)*(1/Internal Clock)*Prescaler

Internal Clock = Fosc/4 = 8MHz/4 = 2MHz

Therefore, Time = (TMR1H:TMR1L)*2/(2000000) = (TMR1H:TMR1L)/1000000

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 29

Distance Calculation:

Distance = Speed * Time

Let d be the distance between Ultrasonic Sensor and Target

Total distance traveled by the ultrasonic burst : 2d (forward and backward)

Suppose, Speed of Sound in Air : 340 m/s = 34000 cm/s

Thus, d = (34000*Time)/2, where Time = (TMR1H:TMR1L)/(1000000)

Therefore, d = (TMR1H:TMR1L)/58.82 cm

TMR1H:TMR1L = TMR1L | (TMR1H<<8)

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor (Cont.)

d

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC
30

sbit LCD_RS at RD2_bit;

sbit LCD_EN at RD3_bit;

sbit LCD_D4 at RD4_bit;

sbit LCD_D5 at RD5_bit;

sbit LCD_D6 at RD6_bit;

sbit LCD_D7 at RD7_bit;

sbit LCD_RS_Direction at TRISD2_bit;

sbit LCD_EN_Direction at TRISD3_bit;

sbit LCD_D4_Direction at TRISD4_bit;

sbit LCD_D5_Direction at TRISD5_bit;

sbit LCD_D6_Direction at TRISD6_bit;

sbit LCD_D7_Direction at TRISD7_bit;

// End LCD module connections

void main()

{

 int a;

 char txt[7];

Lcd_Init();

 Lcd_Cmd(_LCD_CLEAR); // Clear display

Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

 TRISB = 0b00010000; //RB4 as Input PIN (ECHO)

 T1CON = 0x10; //Initialize Timer Module

 while(1)

 {

 TMR1H = 0; //Sets the Initial Value of Timer

 TMR1L = 0; //Sets the Initial Value of Timer

 PORTB.F0 = 1; //TRIGGER HIGH

 Delay_us(10); //10uS Delay

 PORTB.F0 = 0; //TRIGGER LOW

 while(!PORTB.F4); //Waiting for Echo

T1CON.F0 = 1; //Timer Starts

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor (Cont.)

Program without using interrupt

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 31

while(PORTB.F4); //Waiting for Echo goes LOW

 T1CON.F0 = 0; //Timer Stops

 a = (TMR1L | (TMR1H<<8)); //Reads Timer Value

 a = a/58.82; //Converts Time to Distance

 if(a>=2 && a<=400) //Check whether the result is valid or

not

 {

 IntToStr(a,txt);

 Ltrim(txt);

 Lcd_Cmd(_LCD_CLEAR);

 Lcd_Out(1,1,"Distance = ");

 Lcd_Out(1,12,txt);

 Lcd_Out(1,15,"cm");

 }

 else

 {

 Lcd_Cmd(_LCD_CLEAR);

 Lcd_Out(1,1,"Out of Range");

 }

 }

}

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 32

Program by Using PORTB On-Change Interrupt

// LCD module connections

sbit LCD_RS at RD2_bit;

sbit LCD_EN at RD3_bit;

sbit LCD_D4 at RD4_bit;

sbit LCD_D5 at RD5_bit;

sbit LCD_D6 at RD6_bit;

sbit LCD_D7 at RD7_bit;

sbit LCD_RS_Direction at TRISD2_bit;

sbit LCD_EN_Direction at TRISD3_bit;

sbit LCD_D4_Direction at TRISD4_bit;

sbit LCD_D5_Direction at TRISD5_bit;

sbit LCD_D6_Direction at TRISD6_bit;

sbit LCD_D7_Direction at TRISD7_bit;

// End LCD module connections

int a;

//Interrupt function will be

automatically executed on Interrupt

void interrupt()

{

 if(INTCON.RBIF == 1) //Makes sure that it is PORTB On-

 Change Interrupt

 {

 INTCON.RBIE = 0; //Disable On-Change Interrupt

 if(PORTB.F4 == 1) //If ECHO is HIGH

 T1CON.F0 = 1; //Start Timer

 if(PORTB.F4 == 0) //If ECHO is LOW

 {

 T1CON.F0 = 0; //Stop Timer

 a = (TMR1L | (TMR1H<<8))/58.82;

 }

 }

 INTCON.RBIF = 0; //Clear PORTB On-Change Interrupt

 flag

 INTCON.RBIE = 1; //Enable PORTB On-Change Interrupt

}

Example of using Timer 1: Measuring Distance by Ultrasonic Sensor (Cont.)

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 33

void main()

{

 char txt[7];

 Lcd_Init();

 Lcd_Cmd(_LCD_CLEAR); // Clear display

 Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

 TRISB = 0b00010000;

 INTCON.GIE = 1; //Global Interrupt Enable

 INTCON.RBIF = 0; //Clear PORTB On-Change Interrupt Flag

 INTCON.RBIE = 1; //Enable PORTB On-Change Interrupt

 T1CON = 0x10; //Initializing Timer Module

 while(1)

 {

 TMR1H = 0; //Setting Initial Value of Timer

 TMR1L = 0; //Setting Initial Value of Timer

 a = 0;

 PORTB.F0 = 1; //TRIGGER HIGH

 Delay_us(10); //10uS Delay

 PORTB.F0 = 0; //TRIGGER LOW

 Delay_ms(100); //Waiting for ECHO

Lecture Materials on "Timer/Counter", By- Mohammed Abdul Kader, Assistant Prof., EEE, IIUC 34

 a = a + 1; //Error Correction Constant

 if(a>2 && a<400) //Check whether the result is valid or not

 {

 IntToStr(a,txt);

 Ltrim(txt);

 Lcd_Cmd(_LCD_CLEAR);

 Lcd_Out(1,1,"Distance = ");

 Lcd_Out(1,12,txt);

 Lcd_Out(1,15,"cm");

 }

 else

 {

 Lcd_Cmd(_LCD_CLEAR);

 Lcd_Out(1,1,"Out of Range");

 }

 Delay_ms(400);

 }

}

